Immunity to cytomegalovirus....and why you should care

La Jolla Institute for Allergy and Immunology
Chris Benedict
Persistent viral infection

- It’s a two party battle: host offense vs viral defense (we try to look at both sides)

- How do the TNF-family cytokines and cosignaling pathways regulate the immune ‘balance’ that develops over a lifelong infection.

- Herpesviruses are well suited to ask these questions. They establish a lifelong relationship with their hosts, which in the case of CMV and others, requires maintaining immunity to repress recurrence/disease.
Cytomegalovirus (HHV-5, β-herpesvirus)

Some Facts:

- dsDNA genome of ~230kB

- Establishes a lifelong, latent/persistent infection (as do all the α, β & γ herpesviruses)

- ~30-90% of the USA population is infected: varies by age, geography, socioeconomic status. Appears that infection rates are going down in several developed countries.

- Transmitted largely by fluid transfer: breast feeding, sheds in urine/saliva at high levels (can do so for years, asymptotically, in young kids).

- Infection of immune competent persons (even neonates) is largely asymptomatic. Causes disease upon infection of immune suppressed & compromised (e.g. transplant recipients & AIDS patients) and naïve (congenital).

- Institute of Medicine lists it as a high-priority for a vaccine. Costs USA health care system ~5 billion $$ annually.
Cytomegalovirus has an image problem......

(It is a significant public health risk, but few people know it)

- Very little public awareness of the clinical issues caused by CMV. Clinicians in transplant units known about it...and maybe OB/GYNs.
 ♦ “Doesn’t cause a rash”...VZV & HHV6/7 (Roseola)
 ♦ They didn’t tell us it’s ‘forever’ like I learned in health class for HSV
 ♦ Really? I can get it by kissing someone?? (like EBV ‘mono’)

- ~1 in 750 fetuses born in the USA have disease due to congenital CMV infection (largely hearing loss & cognitive disorders)
 ~10x this many fetuses get infected, but have no clinical symptoms.
 sero(-) pregnant women with primary HCMV infection = highest risk group

- Transplant recipients (HSC, BM & solid organ) can get high levels of HCMV viremia, can lead to potential rejection and/or severe disease (e.g. pneumonia). Commonly treated with antivirals (e.g. Valganciclovir & Foscarnet), but they can be quite toxic.

- Several diseases potentially are a result, or amplified by, chronic HCMV infection:
 ♦ Strongest links for: CVD, all-cause mortality & immune senescence (NHANES)
 ♦ Tumors (glioblastoma).
 ♦ HCMV ‘occupies’ so much of our T cell memory pool, perhaps this contributes?
Cytomegalovirus vaccine development

- Has been a high-priority issue of the IOM for ~13 years.

Recent NIH workshop where at least 5 major pharmaceutical companies

My bias: Any vaccine approach will be greatly facilitated by inducing durable HCMV-specific CD4 T cells, and also likely CD8 T cells.

Cellular immunotherapy using HCMV specific T cells protects against disease in BM transplant. CD4 + CD8 is best (Riddell & Greenberg)

Something to remember: HCMV can reinfect a pre-immune host, so this makes the prospect of developing a ‘sterilizing’ vaccine very challenging

EM cells that correlates with congenital protection (not CD8T or Ab).

Gerna et al., JID 2008
CMV can teach us a lot about host immunity

(McGeoch, 2000)

HCMV genome ~235kB

Most the conserved/essential orfs in the various CMVs

MCMV genome ~230kB

Loewendorf and Messerle

Δ8 Δ1 Δ9 A4

Δ6 Δ7 Δ1 A2 A3 A1

Loewendorf and Messerle

MIEP GFP gpt BAC

Δ1 Δ8 Δ9 A4

Δ6 Δ7 Δ1 A2 A3 A1

Loewendorf and Messerle

MIEP GFP gpt BAC
Course of CMV infection in immune competent mice

Innate Immune Response
- IFN-αβ
- NK
- iNKT

Adaptive immune response
- CD4 T cells
- CD8 T cells
- IFN-γ
- Perforin

Days Post Infection
- d3
- d7
- d14
- d60
- d600

MCMV Replication

Salivary Gland

Most visceral organs

Sporadic reactivation?

Arens et al, 2008

"Inflationary" memory CD8 T
(Reddehase, Klenerman, Hill)
MCMV epitope-specific CD4 T cells (I-Ab)

Arens et al., 2009

Days Post MCMV Infection

%IFN-γ + CD4 T cells

A

m18

M45

M25

M45

M104

M122

m139

m139

m141

m142

m142

no peptide

PMA/iono

TNF

IL-2

IL-10

IL-17

% cytokine

IFN-γ

CD4

%IFN-γ + CD4 T cells

Days Post MCMV Infection

Arens et al., 2009
MCMV-specific ‘inflationary’ CD4 T cells depend on the salivary gland, and have a unique memory phenotype

Splenic CD4 T cells analyzed at day 100 after infection

[Bar chart showing the number of IFNγ+ CD4 T cells with and without salivary gland removal for m142 and m09 strains]
Cosignals are critical in regulating T cells

- **CD8 T**
- **CD4 T**

Signal 1
- TCR
- **“signal 1”**

Signal 2
- Cosignals
- Co-Inhibitory (−) “signal 2”
 - HVEM ---- BTLA
 - PD-1 ------ PD-L1
 - B7.1/2 ---- CTLA-4

Co-Stimulatory
- B7.1/B7.2-------CD28
- OX40L ------- OX40
- 4-1BBL ---------- 4-1BB

Signal 1 + Signal 2
- Cytokines (IFNγ, TNF, etc)
- Cytolytic activity
- Proliferation
B7-CD28 costimulation is required for MCMV-specific CD4 T cells

CD4T control replication in the salivary gland...CD8T exert no control here!
B7-CD28 not required for CD8T memory inflation

M45

IFNγ+ splenic CD8$^+$ T cells ($\times 10^6$)

m139

IFNγ+ splenic CD8$^+$ T cells ($\times 10^6$)

m38

IFNγ+ splenic CD8$^+$ T cells ($\times 10^6$)

IE3

IFNγ+ splenic CD8$^+$ T cells ($\times 10^6$)
MCMV inhibition of B7-1 and B7-2 by m138 and m147.5 restricts CD4 T cells and promotes persistent replication

Take Home: CD8T are being primed by uninfected cells (i.e. cross-primed)
PD-L1 is not downregulated in MCMV infected dendritic cells

Infected with MCMV-GFP (MOI=2), gated on GFP+ cells for FACS analysis
Does not bind LIGHT

HCMV UL144

HCMV genome ~235kB

Cha et al., 1997

orf UL144 (a HVEM orthologue)
LIGHT-HVEM-BTLA network is targeted by herpesviruses.
Contributors

LIAI

Benedict Lab
Andrea Loewendorf
Wendell Smith
Shilpi Verma
Ted Prigozy
Qiao Wang
Jessica Ferguson
Josh Chong

Steve Schoenberger
Ramon Arens

Alex Sette
Bjoern Peters

Mitch Kronenberg
Aaron Tyznik

Sanford-Burnham Institute
Carl Ware
John Sedy

Institut für Laboratoriumsmedizin
Gabrielle Hahn

Univ. Western Australia
Alex Redwood

Cardiff University
Gavin Wilkinson
Peter Tomasec

Univ of Lausanne
Jurg Tschopp
Pascal Schneider

Washington Univ.
Ken Murphy
Theresa Murphy

Univ of Edinburgh
Peter Ghazal

Institut d’Investigacions
Ana Angulo

UCSD
Alex Hoffman
Shannon Werner
Kristyn Feldman

NIH Tetrramer Facility

Mt. Sinai
Peter Palese
Adolfo Garcia-Sastre

UC Davis
Peter Barry

OHSU
Ann Hill
Louis Picker
Klaus Fruh
Michael Jarvis
Vic DeFilippis

Rush Medical College
Nell Lurain

Univ of Minnesota
Bruce R. Blazar

Oxford Univ
Paul Klenerman
Sophie Siero

UCSF
Rich Locksley

Univ of Munich
Klaus Pfeffer