Dissemination and Implementation Science Center (DISC)

Multilevel Mediation for Implementation Science

Jonathan Lee Helm

Overview

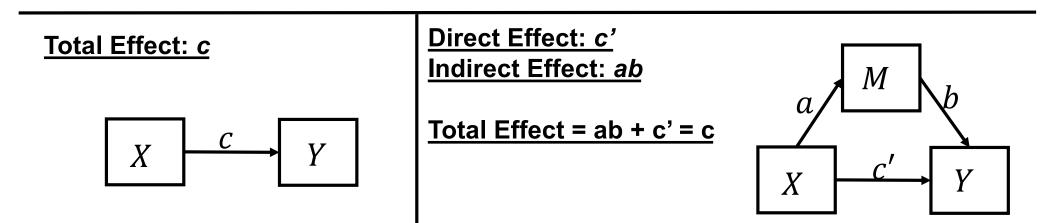
- Empirical example
- Review of mediation
- Review of multilevel modeling
- Importance of centering
- Combining mediation and multilevel modeling: Multilevel mediation
- Alternative models to be explored
- Consideration of Bayesian estimation

Overview

• Empirical example

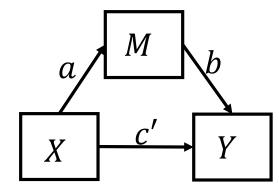
- Review of mediation
- Review of multilevel modeling
- Importance of centering
- Combining mediation and multilevel modeling: Multilevel mediation
- Alternative models to be explored
- Consideration of Bayesian estimation

Empirical Example

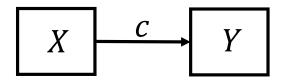

- Baseline measures of a longitudinal study (LOCI)
- 293 providers are nested in 59 clinics
 - Level-1: Provider; Level-2: Clinic
- Self-reported measures of:
 - Norms
 - Implementation Citizenship Behavior Scale [ICBS]
 - Openness towards evidence-based practice
 - How open are you to trying new practices? [OPEMN]
 - Intentions
 - Evidence based treatment intentions [EBTI]

Overview

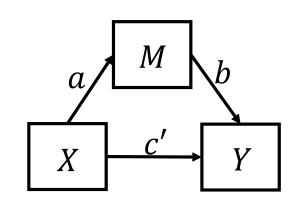
- Empirical example
- Review of mediation
- Review of multilevel modeling
- Importance of centering
- Combining mediation and multilevel modeling: Multilevel mediation
- Alternative models to be explored
- Consideration of Bayesian estimation


- Mediation is a concept
 - The effect of one variable (X) on another (Y) passes through a mediator (M)
 - The total effect of one variable (X) on another (Y) may be separated into a part that is direct, and a part which is indirect and passes through a mediator (M)

- <u>Mediation</u> is a concept
 - The total effect of one variable on another may be separated into a part that is direct, and a part which is indirect and passes through a mediator (*M*)



$$X \xrightarrow{c} Y \qquad Y = b_{0Y} + cX + e_Y$$
$$X = b_{0X} + e_X$$


$$Y = b_{0Y} + c'X + e_Y$$
$$M = b_{0M} + aX + e_M$$
$$X = b_{0X} + e_X$$

- Baseline measures of a longitudinal study (LOCI)
- 293 providers are nested in **59 clinics**
 - Level-1: Provider; Level-2: Clinic
- Average self-reported responses across providers in a clinic
 - Norms (X)
 - Implementation Citizenship Behavior Scale [ICBS]
 - Openness (M)
 - How open are you to trying new practices? [OPEMN]
 - Intentions (Y)
 - Evidence based treatment intentions [EBTI]

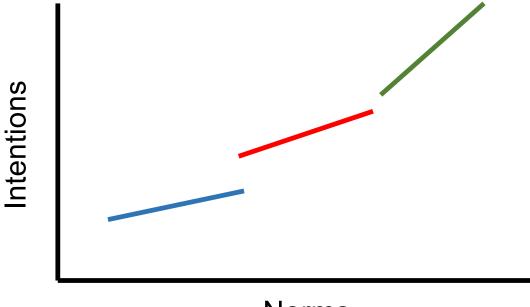
	Est.	p
С	.500	<.001

X:	Norms	(ICBS)
M :	Openness	(OPEMN)
Y :	Intentions	(EBTI)

	Est.	р
а	.238	.006
b	.767	<.001
ab	.183	.022
с′	.317	.017
c' + ab	.500	<.001

Direct Effect: c' Indirect Effect: *ab* **Total Effect =** ab + c' = c

- <u>Mediation</u> is a concept
 - The total effect of one variable on another passes through another variable
- Causality is assumed
 - Just like it is in every other model
 - Don't assume if it doesn't make sense; just like in every other model

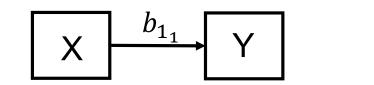

Overview

- Empirical example
- Review of mediation
- Review of multilevel modeling
- Importance of centering
- Combining mediation and multilevel modeling: Multilevel mediation
- Alternative models to be explored
- Consideration of Bayesian estimation

- Multilevel Modeling is a statistical framework
 - Measures may be separated according to an observed grouping structure, and measures from the same group are not independent

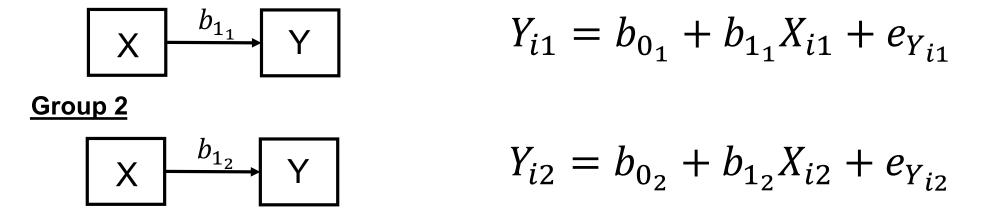
- Multilevel Modeling is a statistical framework
 - Measures may be separated according to an observed grouping structure, and measures from the same group are not independent
 - Our empirical example: 293 providers nested into 59 different clinics
 - Possible that those providers in the same clinic are more related to one another than providers across difference clinics

X: Norms (ICBS) Y: Intentions (EBTI)

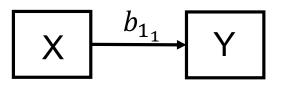


Each group (clinic) has its own intercept and slope

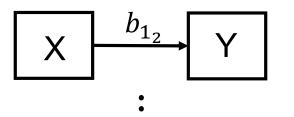
Norms


- Let there be G groups, and groups are labeled g = 1, 2, 3, ..., G
- Our empirical example has 59 clinics, so G = 59
- Model may be written as
 - $Y_{ig} = b_{0_g} + b_{1_g} X_{ig} + e_{Y_{ig}}$

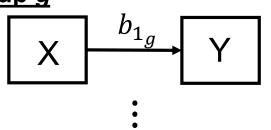
<u>Group 1</u>



$$Y_{i1} = b_{0_1} + b_{1_1} X_{i1} + e_{Y_{i1}}$$


Group 1

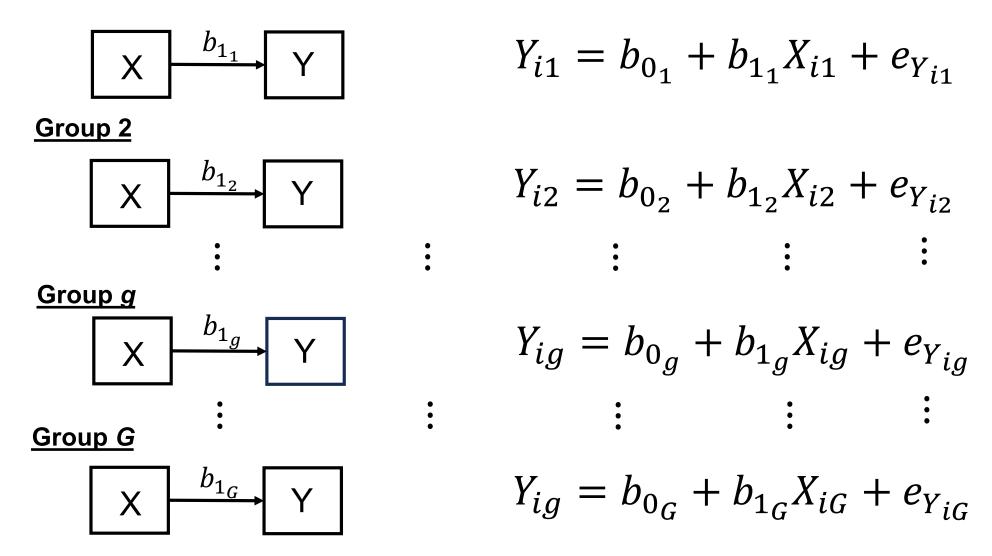
<u>Group 1</u>


<u>Group 2</u>

•

•

<u>Group g</u>



$$Y_{i1} = b_{0_1} + b_{1_1} X_{i1} + e_{Y_{i1}}$$

$$Y_{i2} = b_{0_2} + b_{1_2} X_{i2} + e_{Y_{i2}}$$

: : : :

$$Y_{ig} = b_{0g} + b_{1g}X_{ig} + e_{Y_{ig}}$$
$$\vdots \qquad \vdots \qquad \vdots$$

Group 1

- Let there be G groups, and groups are labeled g = 1, 2, 3, ..., G
- Model may be written as

•
$$Y_{ig} = b_{0_g} + b_{1_g} X_{ig} + e_{Y_{ig}}$$

• b_{0_g} and b_{1_g} are assumed to follow a multivariate normal distribution

•
$$\begin{bmatrix} b_{0_g} \\ b_{1_g} \end{bmatrix} \sim MVN \left(\begin{bmatrix} \mu_{b_0} \\ \mu_{b_1} \end{bmatrix}, \begin{bmatrix} \sigma_{b_0}^2 & \\ \sigma_{b_0,b_1} & \sigma_{b_1}^2 \end{bmatrix} \right)$$

- Let there be G groups, and groups are labeled g = 1, 2, 3, ..., G
- Model may be written as

•
$$Y_{ig} = b_{0_g} + b_{1_g} X_{ig} + e_{Y_{ig}}$$

• b_{0_g} and b_{1_g} are assumed to follow a multivariate normal distribution

•
$$\begin{bmatrix} b_{0_g} \\ b_{1_g} \end{bmatrix} \sim MVN \left(\begin{bmatrix} \mu_{b_0} \\ \mu_{b_1} \end{bmatrix}, \begin{bmatrix} \sigma_{b_0}^2 & \\ \sigma_{b_0,b_1} & \sigma_{b_1}^2 \end{bmatrix} \right)$$

- Residuals adhere to the same normal distribution across group
 - $[e_{Y_{ig}}] \sim N(0, [\sigma_{e_Y}^2])$

- Let there be G groups, and groups are labeled g = 1, 2, 3, ..., G
- Model may be written as Level-1
- $Y_{ig} = b_{0g} + b_1 X_{ig} + e_{Y_{ig}}$ Level-2

•
$$b_{0_g} = \gamma_{00} + u_{0_g}$$

• $b_{1_g} = \gamma_{10} + u_{1_g}$

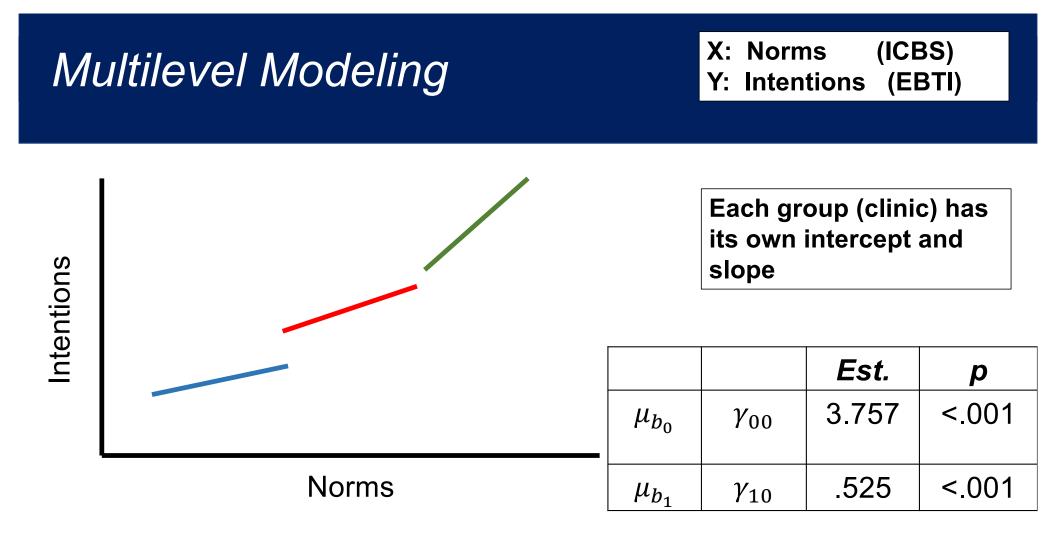
•
$$\begin{bmatrix} b_{0_g} \\ b_{1_g} \end{bmatrix} \sim MVN \left(\begin{bmatrix} \gamma_{00} \\ \gamma_{10} \end{bmatrix}, \begin{bmatrix} \sigma_{u_0}^2 & \\ \sigma_{u_0,u_1} & \sigma_{u_1}^2 \end{bmatrix} \right)$$

<u>Concept of Multilevel Modeling</u>

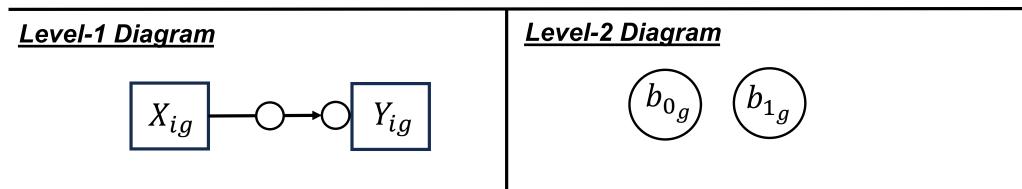
• Dependence is accounted for by 'modeling the structure', and assuming residuals are independent after modeling the grouping structure

<u>In Practice</u>

- Estimate separate intercepts and slopes for each group
- Assume intercepts/slopes follow a multivariate normal
- Assume residual follow a normal distribution with the same variance across groups
- Assume residuals are independent
 - Yay assumptions!


Level-1

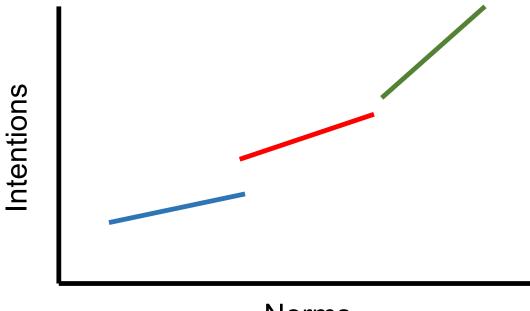
- $Y_{ig} = b_{0g} + b_{1g}X_{ig} + e_{Y_{ig}}$ Level-2
- $b_{0_g} = \gamma_{00} + u_{0_g}$
- $b_{1_g} = \gamma_{10} + u_{1_g}$


•
$$\begin{bmatrix} b_{0_g} \\ b_{1_g} \end{bmatrix} \sim MVN \left(\begin{bmatrix} \gamma_{00} \\ \gamma_{10} \end{bmatrix}, \begin{bmatrix} \sigma_{u_0}^2 \\ \sigma_{u_0,u_1} & \sigma_{u_1}^2 \end{bmatrix} \right)$$

X:	Norms	(ICBS)
Y :	Intentions	(EBTI)

		Est.	p
μ_{b_0}	γ00	3.757	<.001
μ_{b_1}	γ_{10}	.525	<.001

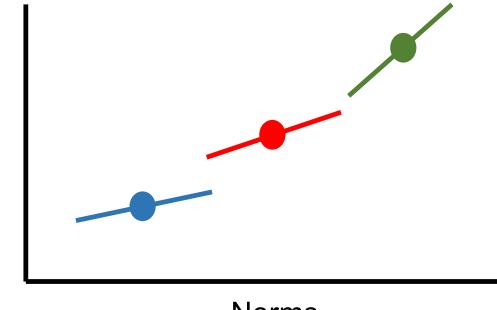
- Let there be G groups, and groups are labeled g = 1, 2, 3, ..., G
- Our empirical example has 59 clinics, so G = 59
- Model may be written as
 - $Y_{ig} = b_{0_g} + b_{1_g} X_{ig} + e_{Y_g}$



Overview

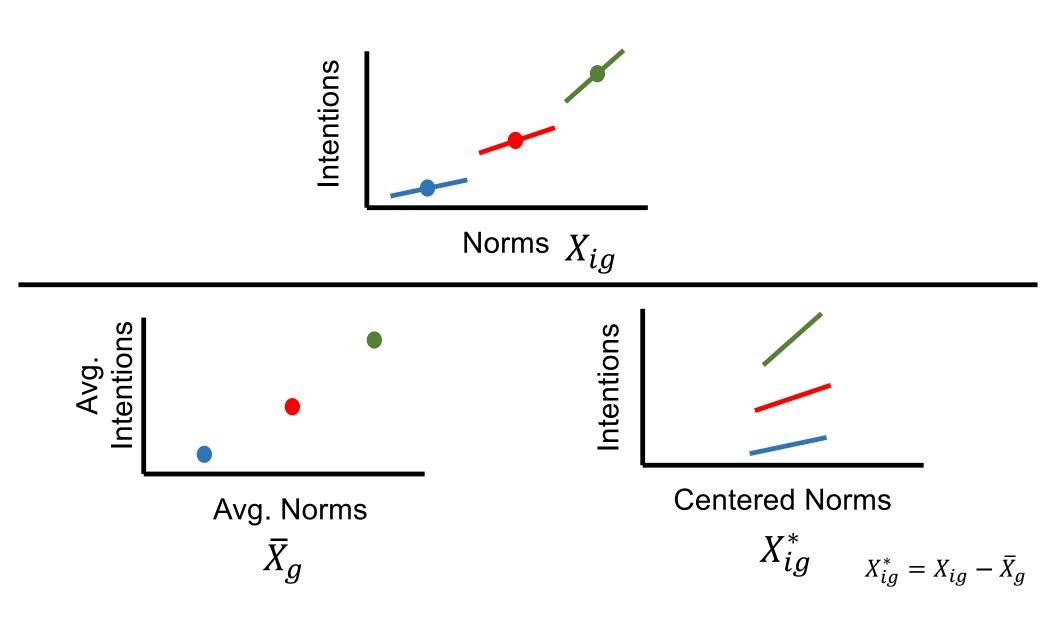
- Empirical example
- Review of mediation
- Review of multilevel modeling
- Importance of centering
- Combining mediation and multilevel modeling: Multilevel mediation
- Alternative models to be explored
- Consideration of Bayesian estimation

• Centering is of utmost important in multilevel models



We can separate two <u>distinct</u> ways that X and Y are related

Norms


Intentions

X: Norms (ICBS) Y: Intentions (EBTI)

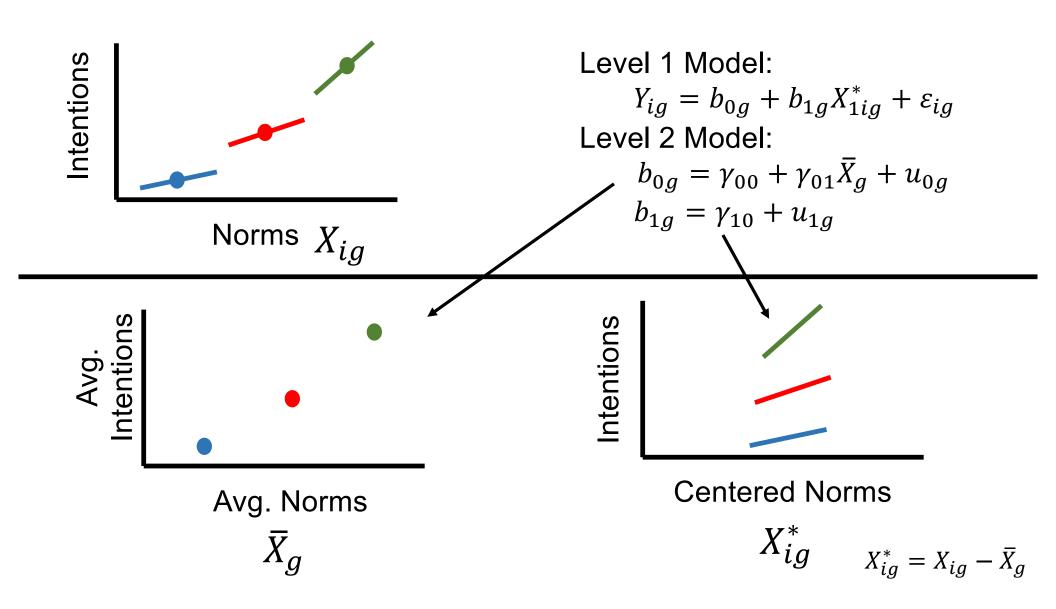
We can separate two <u>distinct</u> ways that X and Y are related

Norms

X: Norms (ICBS) Y: Intentions (EBTI)

• Let
$$X_{ig}^* = X_{ig} - \overline{X}_g$$

Level 1 Model: $Y_{ig} = b_{0g} + b_{1g}X_{ig}^* + \varepsilon_{ig}$ Level 2 Model: $b_{0g} = \gamma_{00} + u_{0g}$ $b_{1g} = \gamma_{10} + u_{1g}$


 γ_{10} will give the average slope across the groups

Commonly referred to as the 'within' effect

• Let
$$X_{ig}^* = X_{ig} - \overline{X}_g$$

Level 1 Model: $Y_{ig} = b_{0g} + b_{1g}X_{1ig}^* + \varepsilon_{ig}$ Level 2 Model: $b_{0g} = \gamma_{00} + \gamma_{01}\overline{X}_g + u_{0g}$ $b_{1g} = \gamma_{10} + u_{1g}$ γ_{01} will estimate the association between group level average across *X* and *Y*

Commonly referred to as the 'between' effect

Multilevel Modeling

 $\underline{\text{Level-1}}_{Y_{ig}} = b_{0_g} + b_{1_g} X_{ig} + e_{Y_{ig}}$ $\underline{\text{Level-2}}_{b_{0_g}} = \gamma_{00} + u_{0_g}$ $b_{1_g} = \gamma_{10} + u_{1_g}$

	Est.	p
<i>Y</i> 00	3.757	<.001
<i>γ</i> ₁₀	.525	<.001

 $\begin{aligned} \underline{\text{Level-1}}\\ Y_{ig} &= b_{0_g} + b_{1_g} X_{ig}^* + e_{Y_{ig}} \\ \underline{\text{Level-2}}\\ b_{0_g} &= \gamma_{00} + \gamma_{01} \overline{X}_g + u_{0_g} \\ b_{1_g} &= \gamma_{10} + u_{1_g} \end{aligned}$

X: Norms

Y: Intentions

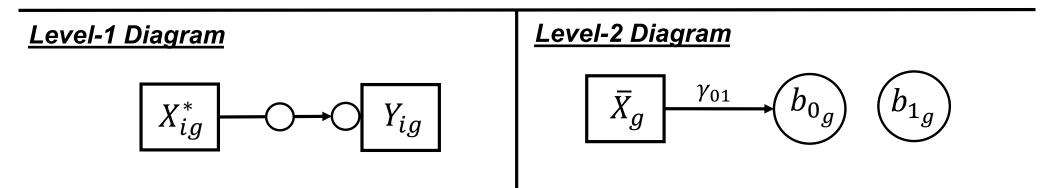
(ICBS)

(EBTI)

	Est.	p
<i>Y</i> 00	4.412	<.001
<i>γ</i> ₁₀	.505	<.001
Y01	.539	<.001

Multilevel Modeling

- We can use multilevel modeling to examine between and within associations
- Hinges on centering
- Dependence is accounted for, if our assumptions hold

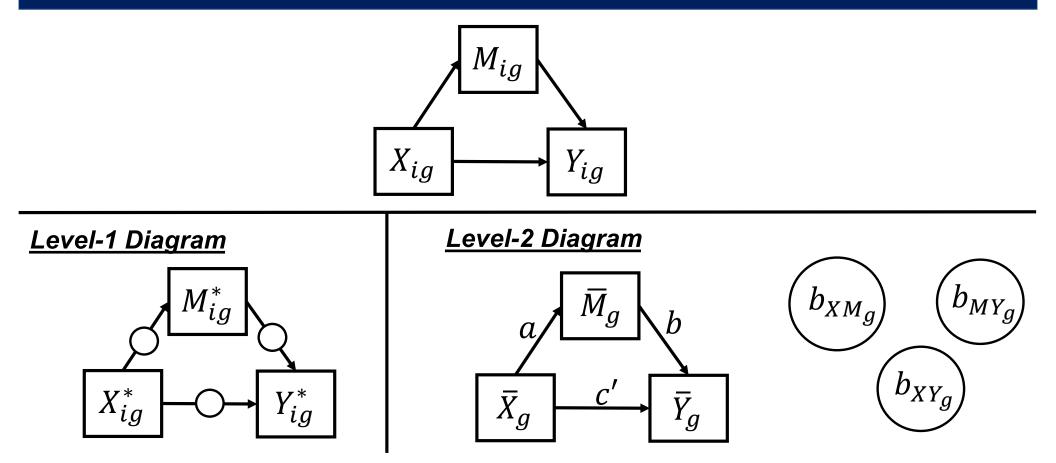

Multilevel Modeling

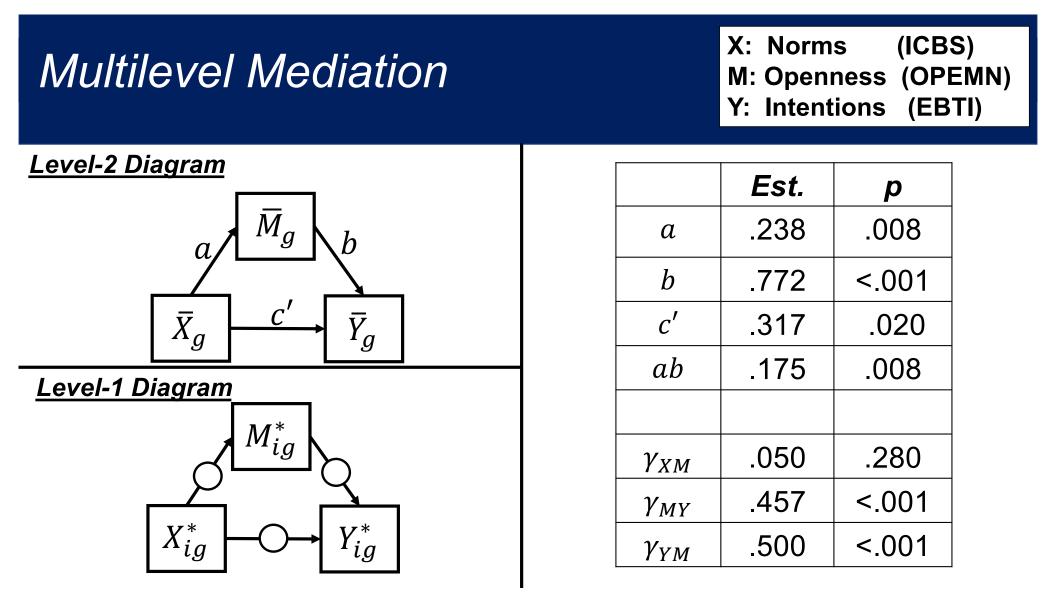
Level 1 Model:

$$Y_{ig} = b_{0g} + b_{1g}X_{1ig}^* + \varepsilon_{ig}$$
Level 2 Model:

$$b_{0g} = \gamma_{00} + \gamma_{01}\overline{X}_g + u_{0g}$$

$$b_{1g} = \gamma_{10} + u_{1g}$$




- Empirical example
- Review of mediation
- Review of multilevel modeling
- Importance of centering
- Combining mediation and multilevel modeling: Multilevel mediation
- Alternative models to be explored
- Consideration of Bayesian estimation

Multilevel Mediation

- <u>Multilevel Mediation</u> combines mediation analysis and multilevel modeling
- We can take the lessons we've learned from multilevel modeling (centering) and apply them to a mediation analysis

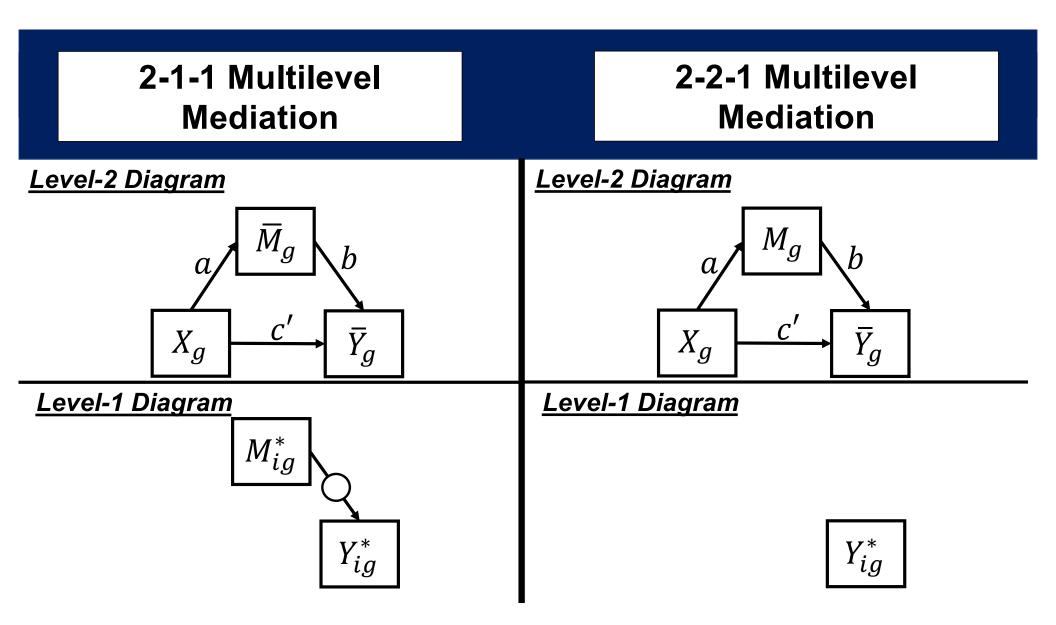
Multilevel Mediation

Multilevel Mediation

X: Norms	(ICBS)
M: Openness	(OPEMN)
Y: Intentions	(EBTI)

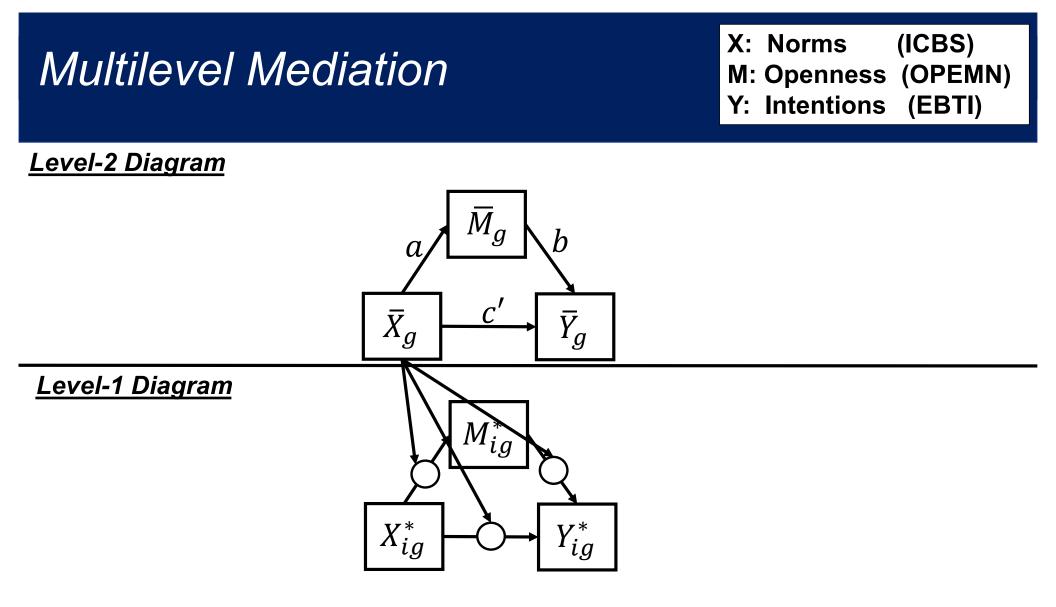
Original Mediation Analysis

	Est.	р
a	.238	.006
b	.767	<.001
<i>C</i> ′	.317	.017
ab	.183	.022


Multilevel Mediation Analysis

	Est.	p
a	.238	.008
b	.772	<.001
с′	.317	.020
ab	.175	.008
γ_{XM}	.050	.280
γ_{MY}	.457	<.001
γ_{YM}	.500	<.001

- Empirical example
- Review of mediation
- Review of multilevel modeling
- Importance of centering
- Combining mediation and multilevel modeling: Multilevel mediation
- Alternative models to be explored
- Consideration of Bayesian estimation


Alternative Multilevel Models

- X, M, and Y variables can be measured at level-1 or level-2
 - Current example all variables measured at level-1
- 1-1-1 Model
- 2-1-1 Model
- 2-2-1 Model
- 2-1-2 Model

Alternative Multilevel Models

- Averages at level-2 can affect level-1 associations
- Commonly referred to as 'cross-level interactions'

- Empirical example
- Review of mediation
- Review of multilevel modeling
- Importance of centering
- Combining mediation and multilevel modeling: Multilevel mediation
- Alternative models to be explored
- Consideration of Bayesian estimation

Bayesian Estimation

- Multilevel mediation is a complex statistical model
 - First paper publishing the full model was in 2010
- The models rarely run with ML estimation
 - The current example didn't run with ML
- Bayesian estimation via Mplus is more stable

Bayesian Estimation

- Multilevel mediation is a complex statistical model
 - First paper publishing the full model was in 2010
- The models rarely run with ML estimation
 - The current example didn't run with ML
- Bayesian estimation via Mplus is more stable
- You don't need to be a 'Bayesian' to use Bayesian estimation
 - Use the appropriate tool for the job

- Empirical example
- Review of mediation
- Review of multilevel modeling
- Importance of centering
- Combining mediation and multilevel modeling: Multilevel mediation
- Alternative models to be explored
- Consideration of Bayesian estimation

Thank you!

• Any questions?