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Empirical Example

• Baseline measures of a longitudinal study (LOCI)
• 293 providers are nested in 59 clinics

• Level-1: Provider; Level-2: Clinic
• Self-reported measures of:

• Norms 
• Implementation Citizenship Behavior Scale [ICBS]

• Openness towards evidence-based practice 
• How open are you to trying new practices? [OPEMN]

• Intentions 
• Evidence based treatment intentions [EBTI]
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Mediation Analysis

• Mediation is a concept
• The effect of one variable (X) on another (Y) passes through a 

mediator (M) 

• The total effect of one variable (X) on another (Y) may be 
separated into a part that is direct, and a part which is indirect 
and passes through a mediator (M)
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Mediation Analysis

• Mediation is a concept
• The total effect of one variable on another may be separated 

into a part that is direct, and a part which is indirect and passes 
through a mediator (M)

𝑋 𝑌

Total Effect: c

𝑋 𝑌

𝑀

𝑐

Direct Effect: c’
Indirect Effect: ab

Total Effect = ab + c’ = c
𝑎 𝑏

𝑐′



Mediation Analysis

𝑋 𝑌

𝑋 𝑌

𝑀

𝑌 = 𝑏!" + 𝑐𝑋 + 𝑒"

𝑌 = 𝑏!" + 𝑐′𝑋 + 𝑒"
𝑀 = 𝑏!# + 𝑎𝑋 + 𝑒#

𝑋 = 𝑏!$ + 𝑒$

𝑋 = 𝑏!$ + 𝑒$

Direct Effect: 𝑐′
Indirect Effect: 𝑎𝑏

Total Effect:	𝑎𝑏 + 𝑐! = 𝑐

𝑐

𝑎 𝑏

𝑐′



Mediation Analysis

• Baseline measures of a longitudinal study (LOCI)
• 293 providers are nested in 59 clinics

• Level-1: Provider; Level-2: Clinic
• Average self-reported responses across providers in a clinic

• Norms (X)
• Implementation Citizenship Behavior Scale [ICBS]

• Openness (M)
• How open are you to trying new practices? [OPEMN]

• Intentions (Y)
• Evidence based treatment intentions [EBTI]



Mediation Analysis

𝑋

Direct Effect: 𝑐′
Indirect Effect: 𝑎𝑏

Total Effect = 𝑎𝑏 + 𝑐! = 𝑐

X:  Norms       (ICBS)
M: Openness  (OPEMN)
Y:  Intentions   (EBTI) 𝑐 𝑌

𝑋 𝑌

𝑀𝑎 𝑏

𝑐′

Est. p
𝑎 .238 .006
𝑏 .767 <.001
𝑎𝑏 .183 .022
𝑐′ .317 .017

𝑐! + 𝑎𝑏 .500 <.001

Est. p
𝑐 .500 <.001



Mediation Analysis

• Mediation is a concept
• The total effect of one variable on another passes through 

another variable

• Causality is assumed
• Just like it is in every other model
• Don’t assume if it doesn’t make sense; just like in every other model
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Multilevel Modeling

• Multilevel Modeling is a statistical framework
• Measures may be separated according to an observed 

grouping structure, and measures from the same group are not 
independent
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Multilevel Modeling

• Multilevel Modeling is a statistical framework
• Measures may be separated according to an observed 

grouping structure, and measures from the same group are not 
independent

• Our empirical example: 293 providers nested into 59 different 
clinics
• Possible that those providers in the same clinic are more related to 

one another than providers across difference clinics
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Multilevel Modeling
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Norms

X:  Norms       (ICBS)
Y:  Intentions   (EBTI) 

Each group (clinic) has 
its own intercept and 
slope 



Multilevel Modeling

• Let there be 𝐺 groups, and groups are labeled 𝑔 = 1, 2, 3, …, 𝐺

• Our empirical example has 59 clinics, so 𝐺 = 59

• Model may be written as
• 𝑌!" = 𝑏#! + 𝑏$!𝑋!" + 𝑒%"!
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Multilevel Modeling

• Let there be 𝐺 groups, and groups are labeled 𝑔 = 1, 2, 3, …, 𝐺
• Model may be written as
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Multilevel Modeling

• Let there be 𝐺 groups, and groups are labeled 𝑔 = 1, 2, 3, …, 𝐺
• Model may be written as

• 𝑌!" = 𝑏#! + 𝑏$!𝑋!" + 𝑒%"!
• 𝑏#!  and 𝑏$!  are assumed to follow a multivariate normal 

distribution

•
𝑏#!
𝑏$!

~𝑀𝑉𝑁
𝜇&#
𝜇&$

,
𝜎&&
'

𝜎&&,&# 𝜎&#
'

• Residuals adhere to the same normal distribution across group

• 𝑒%"! ~𝑁 0, 𝜎)'
'



Multilevel Modeling

• Let there be 𝐺 groups, and groups are labeled 𝑔 = 1, 2, 3, …, 𝐺
• Model may be written as
Level-1

• 𝑌!" = 𝑏#! + 𝑏$𝑋!" + 𝑒%"!
Level-2
• 𝑏#! = 𝛾## + 𝑢#!
• 𝑏$! = 𝛾$# + 𝑢$!

•
𝑏#!
𝑏$!

~𝑀𝑉𝑁
𝛾##
𝛾$# ,

𝜎*&
'

𝜎*&,*# 𝜎*#
'



Multilevel Modeling

• Concept of Multilevel Modeling
• Dependence is accounted for by ‘modeling the structure’, and 

assuming residuals are independent after modeling the 
grouping structure

• In Practice
• Estimate separate intercepts and slopes for each group
• Assume intercepts/slopes follow a multivariate normal
• Assume residual follow a normal distribution with the same 

variance across groups
• Assume residuals are independent

• Yay assumptions!



Multilevel Modeling

X:  Norms        (ICBS)
Y:  Intentions   (EBTI) 

Level-1
• 𝑌!" = 𝑏#! + 𝑏$!𝑋!" + 𝑒%"!

Level-2
• 𝑏#! = 𝛾## + 𝑢#!
• 𝑏$! = 𝛾$# + 𝑢$!

•
𝑏#!
𝑏$!

~𝑀𝑉𝑁
𝛾##
𝛾$# ,

𝜎*&
'

𝜎*&,*# 𝜎*#
'

Est. p
𝜇&& 𝛾## 3.757 <.001

𝜇&# 𝛾$# .525 <.001



Multilevel Modeling

In
te

nt
io

ns

Norms

X:  Norms       (ICBS)
Y:  Intentions   (EBTI) 

Each group (clinic) has 
its own intercept and 
slope 

Est. p
𝜇&& 𝛾## 3.757 <.001

𝜇&# 𝛾$# .525 <.001



Multilevel Modeling

• Let there be 𝐺 groups, and groups are labeled 𝑔 = 1, 2, 3, …, 𝐺

• Our empirical example has 59 clinics, so 𝐺	= 59

• Model may be written as
• 𝑌!" = 𝑏#! + 𝑏$!𝑋!" + 𝑒%!

𝑋!" 𝑌!"
𝑏#!

Level-1 Diagram Level-2 Diagram

𝑏$!
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Multilevel Modeling

• Centering is of utmost important in multilevel models



Multilevel Modeling
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X:  Norms       (ICBS)
Y:  Intentions   (EBTI) 



Multilevel Modeling

• Let 𝑋!"∗ = 𝑋!" − 5𝑋"

34

Level 1 Model:
        𝑌!" = 𝑏#" + 𝑏$"𝑋!"∗ + 𝜀!"
Level 2 Model:
       𝑏#" = 𝛾## + 𝑢#"
        𝑏$" = 𝛾$# + 𝑢$"

𝛾$# will give the average 
slope across the groups

Commonly referred to as the 
‘within’ effect



Multilevel Modeling

• Let 𝑋!"∗ = 𝑋!" − 5𝑋"

Level 1 Model:
        𝑌!" = 𝑏#" + 𝑏$"𝑋$!"∗ + 𝜀!"
Level 2 Model:
       𝑏#" = 𝛾## + 𝛾#$ 5𝑋" + 𝑢#"
        𝑏$" = 𝛾$# + 𝑢$"

𝛾#$ will estimate the 
association between group 
level average across 𝑋 and 𝑌

Commonly referred to as the 
‘between’ effect
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Level 1 Model:
        𝑌!" = 𝑏#" + 𝑏$"𝑋$!"∗ + 𝜀!"
Level 2 Model:
       𝑏#" = 𝛾## + 𝛾#$ 5𝑋" + 𝑢#"
        𝑏$" = 𝛾$# + 𝑢$"



Multilevel Modeling X:  Norms        (ICBS)
Y:  Intentions   (EBTI) 

Level-1
𝑌!" = 𝑏#! + 𝑏$!𝑋!" + 𝑒%"!

Level-2
 𝑏#! = 𝛾## + 𝑢#!
 𝑏$! = 𝛾$# + 𝑢$!

Est. p
𝛾## 3.757 <.001
𝛾$# .525 <.001

Level-1
𝑌!" = 𝑏#! + 𝑏$!𝑋!"

∗ + 𝑒%"!
Level-2
 𝑏#! = 𝛾## + 𝛾#$ 5𝑋" + 𝑢#!
 𝑏$! = 𝛾$# + 𝑢$!

Est. p
𝛾## 4.412 <.001
𝛾$# .505 <.001
𝛾#$ .539 <.001



Multilevel Modeling

• We can use multilevel modeling to examine between and within 
associations

• Hinges on centering
• Dependence is accounted for, if our assumptions hold
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Multilevel Modeling

𝑋!"∗ 𝑌!" 𝑏#!

Level-1 Diagram Level-2 Diagram

𝑏$!

Level 1 Model:
        𝑌!" = 𝑏#" + 𝑏$"𝑋$!"∗ + 𝜀!"
Level 2 Model:
       𝑏#" = 𝛾## + 𝛾#$ 5𝑋" 	+ 𝑢#"
        𝑏$" = 𝛾$# + 𝑢$"

(𝑋"
𝛾*+
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Multilevel Mediation

• Multilevel Mediation combines mediation analysis and multilevel 
modeling

• We can take the lessons we’ve learned from multilevel modeling 
(centering) and apply them to a mediation analysis
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Multilevel Mediation

𝑋!" 𝑌!"

𝑀!"

(𝑋" (𝑌"

)𝑀"

𝑋!"∗ 𝑌!"∗

𝑀!"
∗

Level-1 Diagram Level-2 Diagram

𝑎 𝑏

𝑐′

𝑏&'!

𝑏&(!

𝑏'(!



Multilevel Mediation

Est. p
𝑎 .238 .008
𝑏 .772 <.001
𝑐′ .317 .020
𝑎𝑏 .175 .008

𝛾,- .050 .280
𝛾-% .457 <.001
𝛾%- .500 <.001𝑋!"∗ 𝑌!"∗

𝑀!"
∗

(𝑋" (𝑌"

)𝑀"𝑎 𝑏

𝑐′

Level-1 Diagram

Level-2 Diagram

X:  Norms       (ICBS)
M: Openness  (OPEMN)
Y:  Intentions   (EBTI) 



Multilevel Mediation

Est. p
𝑎 .238 .008
𝑏 .772 <.001
𝑐′ .317 .020
𝑎𝑏 .175 .008

𝛾,- .050 .280
𝛾-% .457 <.001
𝛾%- .500 <.001

Est. p
𝑎 .238 .006
𝑏 .767 <.001
𝑐′ .317 .017
𝑎𝑏 .183 .022

Original Mediation Analysis Multilevel Mediation Analysis

X:  Norms       (ICBS)
M: Openness  (OPEMN)
Y:  Intentions   (EBTI) 
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Alternative Multilevel Models

• X, M, and Y variables can be measured at level-1 or level-2
• Current example all variables measured at level-1

• 1-1-1 Model
• 2-1-1 Model
• 2-2-1 Model
• 2-1-2 Model
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𝑌!"∗

𝑀!"
∗

𝑋" (𝑌"

)𝑀"𝑎 𝑏

𝑐′

Level-1 Diagram

Level-2 Diagram

𝑌!"∗

𝑋" (𝑌"

𝑀"𝑎 𝑏

𝑐′

Level-1 Diagram

Level-2 Diagram

2-1-1 Multilevel 
Mediation

2-2-1 Multilevel 
Mediation



Alternative Multilevel Models

• Averages at level-2 can affect level-1 associations

• Commonly referred to as ‘cross-level interactions’
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Multilevel Mediation

𝑋!"∗ 𝑌!"∗

𝑀!"
∗

(𝑋" (𝑌"

)𝑀"𝑎 𝑏

𝑐′

Level-1 Diagram

Level-2 Diagram

X:  Norms       (ICBS)
M: Openness  (OPEMN)
Y:  Intentions   (EBTI) 
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Bayesian Estimation

• Multilevel mediation is a complex statistical model
• First paper publishing the full model was in 2010

• The models rarely run with ML estimation
• The current example didn’t run with ML

• Bayesian estimation via Mplus is more stable
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Bayesian Estimation

• Multilevel mediation is a complex statistical model
• First paper publishing the full model was in 2010

• The models rarely run with ML estimation
• The current example didn’t run with ML

• Bayesian estimation via Mplus is more stable

• You don’t need to be a ‘Bayesian’ to use Bayesian estimation
• Use the appropriate tool for the job
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Thank you!

• Any questions?
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